• Home
  • Publications
  • Students
  • More
    • Home
    • Publications
    • Students
  • Home
  • Publications
  • Students

Publications

For a compete list, PDFs, and citation counts please see Google scholar.


-2023-


HAAC: A Hardware-Software Co-Design to Accelerate Garbled Circuits

Jianqiao Mo, Jayanth Gopinath, Brandon Reagen

ISCA 2023


Characterizing and optimizing end-to-end systems for private inference

Karthik Garimella, Zahra Ghodsi, Nandan Kumar Jha, Siddharth Garg, Brandon Reagen

ASPLOS 2023


RPU: The Ring Processing Unit

Deepraj Soni, Negar Neda, Naifeng Zhang, Benedict Reynwar, Homer Gamil, Benjamin Heyman, Mohammed Nabeel, Ahmad Al Badawi, Yuriy Polyakov, Kellie Canida, Massoud Pedram, Michail Maniatakos, David Bruce Cousins, Franz Franchetti, Matthew French, Andrew Schmidt, Brandon Reagen

ISPASS 2023


Exploring the Efficiency of Data-Oblivious Programs

Lauren Biernacki, Biniyam Mengist Tiruye, Meron Zerihun Demissie, Fitsum Assamnew Andargie, Brandon Reagen, Todd Austin

ISPASS 2023


Quantifying the Overheads of Modular Multiplication

Deepraj Soni, Mohammed Nabeel Thari Moopan, Negar Neda, Ramesh Karri, Michail Maniatakos,  Brandon Reagen

ISLPED 2023


Generating High-Performance Number Theoretic Transform Implementations for Vector Architectures

Naifeng Zhang, Austin Ebel, Negar Neda, Benedict Reynwar, Andrew Schmidt, Brandon Reagen, Franz Franchetti

HPEC 2023


Design Space Exploration of Modular Multipliers for ASIC FHE accelerators

Deepraj Soni, Mohammed Nabeel, Homer Gamil, Oleg Mazonka, Brandon Reagen, Ramesh Karri, Michail Maniatakos

ISQED 2023


Towards Fast and Scalable Private Inference

Jianqiao Mo, Karthik Garimella, Negar Neda, Austin Ebel, Brandon Reagen

Computing Frontiers 2023


TREBUCHET: Fully Homomorphic Encryption Accelerator for Deep Computation

David Bruce Cousins, Yuriy Polyakov, Ahmad Al Badawi, Matthew French, Andrew Schmidt, Ajey Jacob, Benedict Reynwar, Kellie Canida, Akhilesh Jaiswal, Clynn Mathew, Homer Gamil, Negar Neda, Deepraj Soni, Michail Maniatakos, Brandon Reagen, Naifeng Zhang, Franz Franchetti, Patrick Brinich, Jeremy Johnson, Patrick Broderick, Mike Franusich, Bo Zhang, Zeming Chen, Massoud Pedram

GOMACTech 2023


NTTSuite: Number Theoretic Transform Benchmarks for Accelerating Encrypted Computation

Juran Ding, Yuanzhe Liu, Lingbin Sun, Brandon Reagen

Online, 2023



-2022-



Selective Network Linearization for Efficient Private Inference

Minsu Cho, Ameya Joshi, Siddharth Garg, Brandon Reagen, Chinmay Hegde

ICML 2022


Sphynx: A Deep Neural Network Design for Private Inference

Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth Garg, Chinmay Hegde

IEEE S&P 2022


Towards Full-Stack Acceleration for Fully Homomorphic Encryption

Naifeng Zhang, Homer Gamil, Patrick Brinich, Benedict Reynwar, Ahmad Al Badawi, Negar Neda, Deepraj Soni, Kellie Canida, Yuriy Polyakov, Patrick Broderick, Michail Maniatakos, Andrew G Schmidt, Mike Franusich, Jeremy Johnson, Brandon Reagen, David Bruce Cousins, Franz Franchetti

HPEC 2022


Impala: Low-Latency, Communication-Efficient Private Deep Learning Inference

Woo-Seok Choi, Brandon Reagen, Gu-Yeon Wei, David Brooks

ArXiv 2022


Verifiable Access Control for Augmented Reality Localization and Mapping

Shaowei Zhu, Hyo Jin Kim, Maurizio Monge, G Edward Suh, Armin Alaghi, Brandon Reagen, Vincent Lee

ArXiv 2022


Homomorphically Encrypted Computation using Stochastic Encodings

Hsuan Hsiao, Vincent Lee, Brandon Reagen, Armin Alaghi

NOPE 2022



-2021-



Circa: Stochastic relus for private deep learning

Zahra Ghodsi, Nandan Kumar Jha, Brandon Reagen, Siddharth Garg

NeurIPS 2021


Cryptonite: Revealing the pitfalls of end-to-end private inference at scale

Karthik Garimella, Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, Brandon Reagen

ArXiv 2021


VIP-Bench: A Benchmark Suite for Evaluating Privacy-Enhanced Computation Frameworks

Lauren Biernacki, Meron Zerihun Demissie, Kidus Birkayehu Workneh, Galane Basha Namomsa, Plato Gebremedhin, Fitsum Assamnew Andargie, Brandon Reagen, Todd Austin

SEED 2021


Sisyphus: A cautionary tale of using low-degree polynomial activations in privacy-preserving deep learning

Karthik Garimella, Nandan Kumar Jha, Brandon Reagen

PPML 2021


DeepReDuce: Relu reduction for fast private inference

Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, Brandon Reagen

ICML 2021


Computer memory module processing device with cache storage

Liu Ke, Xuan Zhang, Udit Gupta, WU Carole-Jean, Mark David Hempstead, Brandon Reagen, Hsien-hsin Sean Lee

U.S. Parent 2021


Porcupine: A synthesizing compiler for vectorized homomorphic encryption

Meghan Cowan, Deeksha Dangwal, Armin Alaghi, Caroline Trippel, Vincent T Lee, Brandon Reagen

PLDI 2021


Cheetah: Optimizing and accelerating homomorphic encryption for private inference

Brandon Reagen, Woo-Seok Choi, Yeongil Ko, Vincent T Lee, Hsien-Hsin S Lee, Gu-Yeon Wei, David Brooks

HPCA 2021 (TopPicks Honorable Mention)


Mitigating Reverse Engineering Attacks on Local Feature Descriptors

Deeksha Dangwal, Vincent T Lee, Hyo Jin Kim, Tianwei Shen, Meghan Cowan, Rajvi Shah, Caroline Trippel, Brandon Reagen, Timothy Sherwood, Vasileios Balntas, Armin Alaghi, Eddy Ilg

BMVC 2021



-2020-



Cryptonas: Private inference on a relu budget

Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, Siddharth Garg

NeurIPS 2020


SoK: Opportunities for Software-Hardware-Security Codesign for Next Generation Secure Computing

Deeksha Dangwal, Meghan Cowan, Armin Alaghi, Vincent T Lee, Brandon Reagen, Caronline Trippel

HASP 2020


DeepRecSys: A System for Optimizing End-To-End At-scale Neural Recommendation Inference

Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, 

Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S Lee, David Brooks, Carole-Jean Wu

ISCA 2020


RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing

Liu Ke, Udit Gupta, Carole-Jean Wu, Benjamin Youngjae Cho, Mark Hempstead, 

Brandon Reagen, Xuan Zhang, David Brooks, Vikas Chandra, Utku Diril, Amin Firoozshahian, 

Kim Hazelwood, Bill Jia, Hsien-Hsin S Lee, Meng Li, Bert Maher, 

Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong Wang

ISCA 2020


The Architectural Implications of Facebook's DNN-based Personalized Recommendation

Udit Gupta, Xiaodong Wang, Maxim Naumov, Carole-Jean Wu, Brandon Reagen, David Brooks, Bradford Cottel, Kim Hazelwood, Bill Jia, Hsien-Hsin S Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, Xuan Zhang

HPCA 2020



-2019-



MASR: A Modular Accelerator for Sparse RNNs

Udit Gupta, Brandon Reagen, Lillian Pentecost, Marco Donato, Thierry Tambe,

Alexander Rush, Gu-Yeon Wei, David Brooks

PACT 2019 (Best paper nomination)


MaxNVM: Maximizing DNN Storage Density and Inference E!iciency with Sparse Encoding and Error Mitigation

Lillian Pentecost, Marco Donato, Brandon Reagen, Udit Gupta, Siming Ma, Gu-Yeon Wei, David Brooks

MICRO 2019


Demystifying Bayesian Inference Workloads

Yu Emma Wang, Yuhao Zhu, Glenn G Ko, Brandon Reagen, Gu-Yeon Wei, David Brooks

ISPASS 2019


Machine learning at facebook: Understanding inference at the edge

Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, Tommer Leyvand, Hao Lu, Yang Lu, Lin Qiao, Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch, Peter Vajda, Xiaodong Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran Xian, Sungjoo Yoo, Peizhao Zhang

HPCA 2019



-2018-



Weightless: Lossy Weight Encoding For Deep Neural Network Compression

Brandon Reagen, Udit Gupta, Robert Adolf, Michael Mitzenmacher, Alexander Rush, Gu-Yeon Wei, David Brooks

ICML 2018


Ares: A Framework for Quantifying the Resilience of Deep Neural Networks

Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough, Sae Kyu Lee, Gu-Yeon Wei, David Brooks

DAC 2018 ( Best Paper Nomination! )


On-Chip Deep Neural Network Storage with Multi-Level eNVM

Marco Donato, Brandon Reagen, Lillian Pentecost, Udit Gupta, Gu-Yeon Wei, David Brooks

DAC 2018


Assisting High-Level Synthesis Improve SpMV Benchmark Through Dynamic Dependence Analysis

Rafael Garibotti, Brandon Reagen, Yakun Sophia Shao, Gu-Yeon Wei, David Brooks

TCAS II 2018



-2017-



Deep Learning for Computer Architects

Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, David 

Synthesis Lecture 2017


A Fully-Integrated Battery-Powered System-on-Chip in 40-nm CMOS for Closed-Loop Control of Insect-Scale Pico-Aerial Vehicle

Xuan Zhang, Mario Lok, Tao Tong, Sae Kyu Lee, Brandon Reagen, Simon Chaput, Pierre-Emile J Duhamel, Robert J Wood, David Brooks, Gu-Yeon Wei

JSSC 2017


A Case for Efficient Accelerator Design Space Exploration via Bayesian Optimization

Brandon Reagen, Jose-Miguel Hernández-Lobato, Robert Adolf, Michael Gelbart, Paul Whatmough, Gu-Yeon Wei, David Brooks

ISLPED 2017


Using Dynamic Dependence Analysis to Improve the quality of High-Level Synthesis Designs

Rafael Garibotti, Brandon Reagen, Sophia Shao, Gu-Yeon Wei, David Brooks

ISCAS 2017


The Design and Evolution of Deep Learning Workloads

Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, David Brooks

IEEE MICRO 2017



-2016-



Fathom: Reference Workloads for Modern Deep Learning Methods

Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, David Brooks

IISWC 2016


Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators

Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyungkwong Lee, Sae Kyu Lee, Jose-Miguel Hernández-Lobato, Gu-Yeon Wei, David Brooks

ISCA 2016



-2015-



A Multi-Chip System Optimized for Insect-Scale Flapping-Wing Robots

Xuan Zhang, Mario Lok, Tao Tong, Simon Chaput, Sae Kyu Lee, Brandon Reagen, Hyungkwong Lee, David Brooks, Gu-Yeon Wei

VLSI 2015


The Aladdin Approach to Accelerator Design and Modeling

Sophia Shao, Brandon Reagen, Gu-Yeon Wei, David Brooks

IEEE MICRO, Top Picks 2015



-2014-



MachSuite: Benchmarks for Accelerator Design and Customized Architectures

Brandon Reagen, Robert Adolf, Sophia Shao, Gu-Yeon Wei, David Brooks

IISWC 2014


Aladdin: A Pre-RTL, Power-Performance Accelerator Simulator Enabling Large Design Space Exploration of Customized Architectures

Sophia Shao, Brandon Reagen, Gu-Yeon Wei, David Brooks

ISCA 2014



-2013-



Quantifying Acceleration: Power/Performance Trade-offs of Application Kernels in Hardware

Brandon Reagen, Sophia Shao, Gu-Yeon Wei, David Brooks

ISLPED 2013



-2012-



Joined Harvard as a PhD student.

Downloads

NTTSuite (zip)

Download

Copyright © 2020 Brandon Reagen - All Rights Reserved.

Powered by